
TECHNICAL NOTES AND SHORT PAPERS 

Inversion of the N-Dimensional Laplace 
Transform 

By Bruce S. Berger 

The inversion of the one dimensional Laplace transform in terms of series 
expansions of orthogonal functions has been considered by several authors [21, [3], 
[4], [7], [9]. Erdelyi [2] constructs expansions in terms of trigonometric functions and 
Legendre polynomials and suggests expansions in terms of Jacobi and ultraspherical 
polynomials. Papoulis [7] gives expansions in terms of the sine function and Legendre 
polynomials of the form 

00 

F(u) = q(e-u) E bnP2X)(eCau), 
n=O 

where a- is a positive parameter, X = or 1, and g depends on the choice of X. These 
formulae are closely related to the corresponding expansions of Erdelyi. In the follow- 
ing, an expansion is constructed for the inversion of the n-dimensional Laplace trans- 
form in terms of the ultraspherical polynomials in which the coefficients are com- 
puted recursively. Numerical results indicate that the formula developed here 
converges more rapidly than Papoulis' [7] trigonometric formula. 

The 2-dimensional Laplace transform is defined by 
gox go 

(1) f(pl, p2) = jj exp (-Pl ul- P2 u2)F(ul , u2) dul du2 . 

Conditions on F(ul, U2) which insure convergence of the integrals for the two di- 
mensional case are discussed in [8]. Let o-i > 0 and consider the change of variable 
given by 

(2) ui= --ln(-xi2). 
o.i 

Let 

(3) F(x1, X2) F ln (- x12)], [- Iln ( -x2 

(4) pi (mi + Xi + 200% where mi = O, , 2,*. 

Substituting into Eq. (1) gives 

f[(ml + Xl + 2) Ti (M2 X2 + '2)a-2] 

(5) 4_ 
(1 12 

( 5 f 4 l II xi(, _ Xi2)mi(I 
_ 

Xi2)Xi-l/2F (x1 , x2) dxl dx2 
O'l 0'2 0 =1 

Assume that F(x1, X2) may be expanded in a double series of odd ultraspherical 
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polynomials. Then 

(6) F(xi, X2) = E E CO1O2P2(1j+P 202+1. 
01=0 32=0 

Substituting Eq. (6) into Eq. (5) changing the order of summation and integration, 
utilizing the orthogonality of the ultraspherical polynomials and noting that 

(7) x(1 -x()I X m Pm I2+o (x) A (X, rn, 2n + 1), 
n=O h( + 

where 

(X) P X2 r(2n?+2X?+1) 
(8) n+1 =2- { rr(x) }(2n + X + 1)F(2n + 2) 

and 

(9) A(X, Mn, 2n + 1) - ( 1)2I(a)P(m + X + 2)P(n + X + 1)m! 
r(x)r(n + rn ? 'X ? 2)n!(m - n)! 

gives 

f[(ml + Xl + 20)1, (m2+ X2 + 0)02] 

(10) =- 1E C0102A(X1, mi1, 231 + 1)A(X2, in2, 2/32 + 1). 
-1 02 1=0 = 2=? 

The coefficients C0102 may be computed recursively. The form in which Eq. (9) 
appears was indicated by the referee. See [6, 16.3, Eq. 4] and [5, 4.4, Eq. 6]. These 
results are readily generalized to the case of n-variables. 

Consider the following numerical examples. 

F(ui, u2) = 1-Jo(ulu2)112 for 0 ? u1 _ a, 0 ? u2 ? a 

= -Jo(ulu2)112 for u1 > a, U2 > a. 

Then 

f(pl, p2) = 1 [1-exp [-pia] - exp [-p2a] + exp [-(pi+ p2)a]] 

(11) 1PP2 

pl P2 + i 

The results of the application of Eq. (10) to Eq. (11) are given in Table 1 
for the cases F(0.5, U2) and F(12.5, U2) with o-I = 0.114, 02 = 0.114, a = 18.0711, 
0 a< ml a 8, 0 ? m2 - 8, Xi = 5, X2 = 5. 

For comparison with Papoulis' trigonometric series consider the function: 

F(u1) = sin u, for 0 ? u1 ? 107r 

(12) = 0 for 107r < ui, 

f (p+) = 1(1 - exp [-l07rpi]). 
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TABLE 1 
Two dimensional case 

F(ui, U2) 

Ui = 0.5 Exact u, = 12.5 Exact 

1.0 .1217 .1211 1.409 1.385 
2.0 .2352 .2348 1.178 1.178 
3.0 .3423 .3413 .8405 .8167 
4.0 .4416 .4409 .7157 .7003 
5.0 .5350 .5339 .8004 .8069 
6.0 .6224 .6206 .9989 1.002 
7.0 .7027 .7012 1.187 1.168 
8.0 .7764 .7761 1.278 1.246 
9.0 .8457 .8455 1.249 1.227 

10.0 .9126 .9096 1.132 1.137 

TABLE 2 
One dimensional case 

F(ui) 
Ui/7r 

0 ? in, < 10 0 < mi < 15 Papoulis Exact 

0.25 0.7073 0.7067 0.6434 0.7071 
0.50 0.9985 0.9996 1.0264 1.0000 
0.75 0.7094 0.7069 0.7108 0.7071 
1.00 -0.0029 0.0007 0.0698 0.0000 
1.25 -0.7087 -0.7079 -0.8933 -0.7071 
1.50 -0.9869 -0.9999 -0.9667 -1.0000 
1.75 -0.7061 -0.7046 -0.4092 -0.7071 
2.00 -0.0456 -0.0033 0.1261 0.0000 

The results of the application of Eq. (10) to Eq. (12) are given in Table 2 for the 
cases 0 < mi < 10, 0 < mi < 15 with o1 = 0.2546 and Xi = 5. The third column of 
Table 2 contains the values given by Papoulis' trigonometric expansion retaining 11 
terms with cr = 0.2546. 

The author wishes to thank the referee for acquainting him with an extensive 
literature of which he had been unaware. All computations were performed at the 
Computer Science Center, University of Maryland, under NASA. grant NS.G.398. 
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On the First Positive Zero of P(-I/2(cos 0), 

Considered as a Function of 

By R. D. Low 

1. Introduction. Several years ago Pal [1], [2] published two papers in which 
he considered the roots of the equations P,(m)(1() = 0 and (dcd,u) P,(m)(,4) = 0 re- 
garded as equations in v. t In these equations mn is an integer and , = cos 0. Among 
the roots which Pal computed and tabulated are those of the equation 
P^(2)(cos 0) = 0 for 0 = 7r/12, 7r/6, and 7r/4, and he lists as the first root in each 
case: 4.77, 2.26, and 1.52. In view of the fact that P'(2) (cos 0) = v(v + 2) (V2 _ 1). 
pj(-2) (cos 0), it must be assumed that the numbers just mentioned are respectively 
the first positive roots of the equation p (-2)(cos 0) = 0 for 0 = ir/12, 7r/6, and 7r/4, 
since the equation p'(2) (cos 0) = 0 has the roots -2, - 1, 0, and 1 regardless of the 
value of 0. In any event it will be seen that the numbers 4.77, 2.26, and 1.52 are not 
roots at all in as much as they are less than the first element of a sequence of lower 
bounds to be exhibited below. 

2. A Sequence of Lower Bounds. We restrict our attentioii to the function 
P-1/2(cos 0) in which m = 1, 2, 3, ... because of the identity [3] 

P(m)2(coS 0) = (-I)m(2 - 1)(V2 9) ... [V - (2r_ - 1)2j4]Pv-1?2(cos 6), 

which shows that the zeros of Pm)/2(cos 0) consist of (in, =t, * , ?tm - 

together with those of P 1I/2 (cos 0) . It is known that P(iIlj ( cos 0), considered as a 
function of the complex variable v, has infinitely many zeros which are all real and 
simple. Moreover, since P(_i?) (cos 0) is an even function of v which does not vanish 
for v = 0, only its positive zeros need be considered. Hence the purpose of the present 
investigation is to establish a sequence of lower bounds for the first positive zero of 
P1/2 (cos 6). In addition to the properties mentioned already, it is also known that 
Pv2/)2(cos 0) is an entire function of order unity. Hence if Vn,m(O) denotes its nth 
positive zero, P(-m)7(cos 0) can be expressed as an infinite product of the form 
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